

可调光功率管外置可作大电流非隔离恒流驱动 IC

■ 芯片概述

UCT4178 是一款外围电路简单,固定关断时间模式,适用于 85Vac~265Vac 全电压范围、直流8V-450V 内的非隔离式恒流 LED 驱动芯片。

UCT4178 内置 PWM 调光和线性调光两种模式, 其 DIM 端口允许外接低频 PWM 信号实现 0~100%调光,或者外接 0~1.2V 直流电位进行线性调光。RNTC 端外接热敏电阻可对 LED 灯珠进行温度补偿,当 RNTC 端电压将至 250mV,则 LED 电流会随着 RNTC 端电压降低而减少。

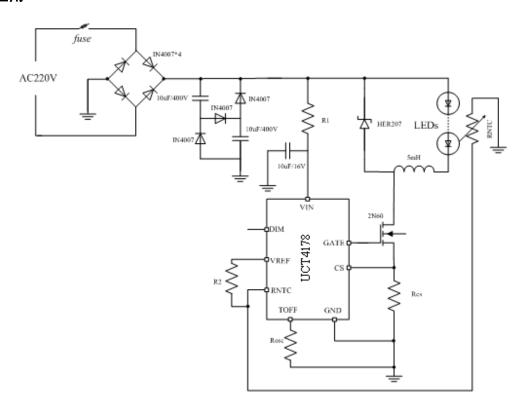
UCT4178 采用 SOP-8 封装。

■ 典型应用

- 直流或交流输入 LED 驱动器
- RGB 背光 LED 驱动
- 电动自行车照明
- 汽车照明等

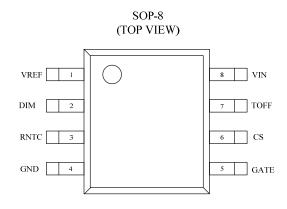
■ 封装

SOP-8


■ 特点

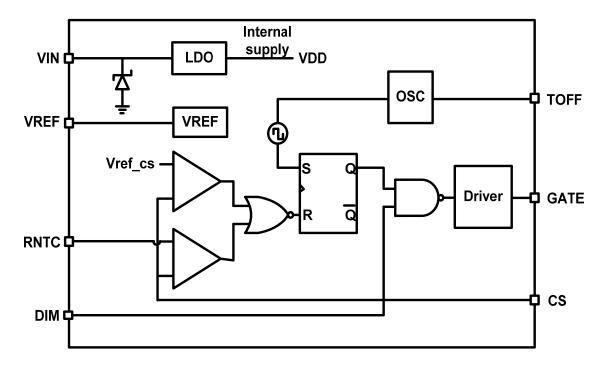
- 高效率: 可达 92%
- 输出电流范围: 20mA~3A
- 固定关断时间可调
- 线性和 PWM 调光
- 温度补偿
- 峰值电流采样电压: 0.35V

Rev.1.0 1 www.hkuct.com



■ 典型应用

- 备注: 1、R1 的取值取决于输入电压的范围
 - 2、R2 和 RNTC 用于 LED 的温度补偿
 - 3、Rcs 的取值决定了输出电流的大小


■ 管脚示意图和功能

管脚	管脚名	功能		
1	VREF	芯片内部输出基准电压1.25V,不需要外接旁路电容。		
2	DIM	芯片线性和MPW调光输入端。当该管脚接到地,则芯片处于关闭状态。当芯片接入高于1.2V或悬空状态,则芯片以100%电流输出。		
3	RNTC	芯片温度补偿接入端。		
4	GND	接地。		
5	GATE	外接高压NMOSFET的栅极驱动管脚。		
6	CS	电流取样端,通过外接电阻到地来设置芯片的输出电流。		
7	TOFF	在该管脚和GND之间接一电阻来设置MOSFET的关断时间,最小关断时间可		
		达510ns,		
8	VIN	通过外接一个电阻连到最高100V直流电源上,必须接一个旁路电容。		

■ 功能框图

■ 最大极限参数

项目	符号	极限范围	单位
VIN脚到接地电压	Vin	-0.3—14	V
CS, RNTC, DIM, TOFF, VREF 脚到地电压		-0.3—6	V
GATE管脚到地电压	V _{GATE}	-0.3—12	V
VIN脚输入电压范围	I _{VIN}	1—20	mA
存储温度范围	T _{STG}	-40—150	$^{\circ}$
工作结温	TJ	-40—150	$^{\circ}$
ESD HBM模式		4000	V

■ 电参数

符号	项目	条件	最小	典型	最大	单位
V_{INDC}	输入直流电压范围		8		450	V
V_{IN_clamp}	VIN 钳位电压		4.5	5.5	6.5	
I _{IN}	静态工作电流	VIN=10.5V GATE floating		0.4	1	mA
UVLO	VIN 欠压保护电压	VIN rising		4.5		V
∆UVLO	欠压保护迟滞电压	VIN falling		700		mV
V_{DIM}	DIM 端调光电压范围		0.3		1.2	٧
V_{DIMoff}	DIM 端关断电压		0.15	0.2	0.25	V
V_{DIMon}	DIM 端开启电压		0.20	0.25	0.3	V
R_{DIM}	DIM 端上拉电阻			200K		Ω
V_{CSTH}	电流取样端 CS 阈值电压			350		mV
V_{RNTC}	温度补偿端阈值电压		0.05		0.25	٧
T _{OFF}	关断时间	T _{OFF} pin Floating		510		ns
V_{REF}	VREF 端电压			1.2		V
I _{REF}	VREF 端输出电流		0.15		2	mA

Rev 1.0

UCT4178

■ 应用信息

● 工作原理

UCT4178 采用峰值电流检测和固定关断时间的控制方式。电路工作在开关管导通和关断两种状态。参见典型应用电路图,当 MOS 开关管处于导通状态时,输入电压 VIN 通过 LED 灯、电感 L1、MOS 开关管、电流检测电阻 RCS 对电感充电,流过电感的电流随充电时间逐渐增大,当电流检测电阻 RCS 上的电压降达到电流检测阈值电压 VCSTH 时,控制电路使得 GATE 输出端变为低电平并关断 MOS 开关管。当 MOS 开关管处于关断状态时,电感通过由 LED 灯、续流二极管 D1 以及电感自身组成的环路对电感储能放电。MOS 开关管在关断一个固定的时间 TOFF 后,重新回到导通状态,并重复以上导通与关断过程。

● TOFF 设置

固定关断时间可由连接到 TOFF 引脚端的电阻 RT 设定:

$$T_{OFF}$$
=5*10⁻¹¹* $R_{T^{\prime\prime}}$ 如 RT=200K Ω ,则 T_{OFF} =5*10⁻¹¹*200*10³=10*10⁻⁶S=10uS

● 导通时间 TON

芯片的导通时间 TON 由下式决定:

$$TON = \frac{VLED*TOFF}{VIN-VLED}$$

● 输出电流设置

LED 输出电流由电流采样 RCS 以及 TOFF 等参数设定:

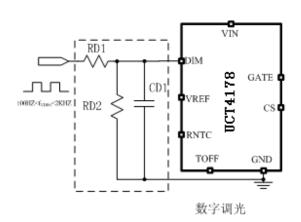
$$ILED = \frac{0.5}{RCS} - \frac{VLED*TOFF}{2L1}$$

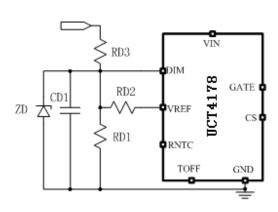
其中 VLED 是 LED 的正向导通压降, L1 是电感值。

注:输出 LED 电流计算公式适用于电感电流处于连续模式

● 电感 L1 取值

为保证系统的输出恒流特性, 电感电流应工作在连续模式, 要求的最小电感取值为:


$$L1 > \frac{\text{VLED}*\text{TOFF}}{2\text{ILED}}$$


● 系统工作频率

系统工作频率 FS 由下式确定:

$$FS = \frac{VIN - VLED}{VIN * TOFF}$$

● 数字调光与模拟调光

模拟调光

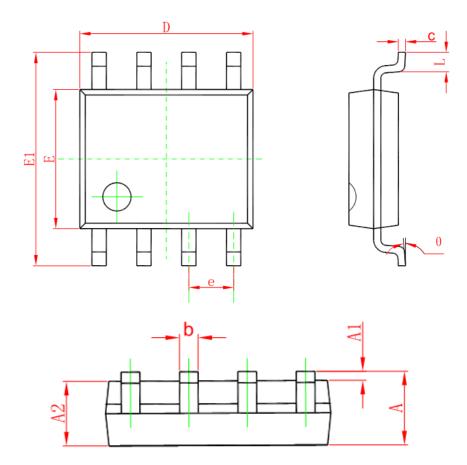
数字调光即通过改变芯片调光脚 DIM 引脚上方波信号的占空比 Duty 实现调光,方波幅值应满足 1.2V<VDIM<5.5V,调光信号频率不建议使用过高频率,建议 100Hz<f_{VDIM}<2KHz(典型值推荐 500Hz),输出电流 I_{OUT} 正比于 DIM 引脚上的方波信号的占空比 Duty, 当 Duty=100%时,输出电流达到最大 I_{OUTmax}。在大电流输出应用时,由于在 Duty 的改变使得流过电感的电流处于 DCM 模式,采用如图所示的虚线框内电路可以降低电感由于低频产生的噪声,当使用虚线框内的电路时,须保证调光信号到达 DIM 脚的有效高电平高于 1.2V。(注:例如调光信号高电平为 5V,元件的选择可为 RD1=20K,RD2=10K,CD1=10nF)

模拟调光即改变芯片 DIM 调光脚的电压值, 0.3V<VDIM<1.2V, 芯片 CS 脚检测电压 VCSTH 线性变化, 输出电流为

$$I_{OUT}=(0.33*V_{DIM}-0.016)/R_{CS}-2.5*10^{-11}*V_{LED}*R_T/L$$

当 VDIM>1.2V,芯片 CS 脚检测电压 VCSTH 保持不变;当 VDIM<0.3V,芯片 CS 脚检测电压为 0,芯片停止开关。

● 温度补偿


芯片设有温度补偿脚 RNTC,当 RNTC 脚电压 VRNTC 在 0.05V-0.25V 之间变化时,输出电流也随之变化; 当 VRNTC>0.25V,则输出电流最大;当 VRNTC<0.05V,芯片停止工作,无输出电流。

注: 当不使用 RNTC 温度补偿脚时可直接与芯片基准脚 VREF 短接。

■ 封装尺寸

• SOP-8

Chl	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0.010	
A2	1. 350	1.550	0. 053	0.061	
b	0. 330	0.510	0. 013	0.020	
С	0. 170	0. 250	0. 006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0.050 (BSC)		
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	